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[1] Earthquake early warning (EEW) systems should provide reliable warnings as quickly
as possible with a minimum number of false and missed alarms. Using the example of the
megacity Istanbul and based on a set of simulated scenario earthquakes, we present a
novel approach for evaluating and optimizing seismic networks for EEW, in particular in
regions with a scarce number of instrumentally recorded earthquakes. We show that, while
the current station locations of the existing Istanbul EEW system are well chosen, its
performance can be enhanced by modifying the parameters governing the declaration of
warnings. Furthermore, unless using ocean bottom seismometers or modifying the current
EEW algorithm, additional stations might not lead to any significant performance increase.

Citation: Oth, A., M. Böse, F. Wenzel, N. Köhler, and M. Erdik (2010), Evaluation and optimization of seismic networks and
algorithms for earthquake early warning – the case of Istanbul (Turkey), J. Geophys. Res., 115, B10311,
doi:10.1029/2010JB007447.

1. Introduction

[2] Earthquake early warning (EEW) represents an
important tool for seismic risk mitigation, since it fills the gap
between long‐term hazard assessment [e.g., Petersen et al.,
2008] and postevent rapid response tools [Wald et al., 2003],
allowing for preventive action such as defining appropriate
building codes, and facilitating efficient search and rescue
operations, respectively. In between these, EEW systems
operate during the co‐seismic stage of an earthquake by
providing short‐term (in the order of a few to several tens of
seconds) warnings of impending strong ground shaking at a
given user site, for instance a heavily populated metropolitan
area.
[3] The usefulness of EEW systems, however, strongly

depends on their ability to provide both fast and reliable
warnings. As a general rule, there is a trade‐off between these
two requirements [Böse et al., 2008]. Providing warnings
more quickly leads to a loss of accuracy due to the smaller
amount of seismological information available, whereas, for
the same reason, a higher degree of reliability involves a loss
of warning time.
[4] Several algorithms for tackling the EEW problem

exist [Kanamori, 2005; Allen et al., 2009b]. The types of

information they provide can differ: while the EEW systems
operational in, e.g., Mexico [Espinosa‐Aranda et al., 1995]
and Istanbul [Erdik et al., 2003] provide rather qualitative
warnings (basically stating whether strong ground motion is
expected or not), others like the one recently implemented
by the Japan Meteorological Agency [Kamigaichi et al.,
2009] or those currently undergoing real‐time testing in
California [Allen et al., 2009a; Böse et al., 2009; Cua et al.,
2009] provide quantitative regional ground motion estimates
(for instance of peak ground velocity), resulting in so‐called
alert maps. No matter which methodology is chosen, the
implementation of an EEW system requires either the
existence of a seismic network not specifically designed for
EEW (which may, therefore, be supplemented by a given
number of sensors) or the design of an entirely new network.
Furthermore, each EEW methodology involves automated
rules to decide if a warning shall be issued or not. These
rules need a certain number of system parameters that have
to be set appropriately.
[5] Efficient EEW aiming at both fast and accurate

warnings thus requires an optimally designed seismic net-
work (or supplementation of an existing one) and the best
set of algorithm parameters. Optimum network design is not
straightforward, since it strongly depends on the seismo-
tectonic setting of the region of interest, funding availability
(which directly translates into sensor and infrastructure
availability), and other constraints. These requirements might
also differ for different EEW algorithms.
[6] Designing EEW systems thus requires systematic

evaluation and optimization. While significant advances
have been made in understanding the general feasibility
and limitations of EEW algorithms [Allen et al., 2009b, and
references therein] and communication technology [Böse
et al., 2009], little attention has been paid to optimization
so far. In order to contribute to this need, we developed a
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systematic optimization technique for EEW systems, and we
demonstrate this approach on the example of the Istanbul
EEW system. Starting with the evaluation of the current
Istanbul EEW system, we then investigate the effect of
changes in the algorithm parameters currently used in the
system and finalize our discussion by optimizing the seismic
network design using a microgenetic algorithm and a cost
function designed to compare the performance of different
EEW system variants.

2. The Current Istanbul Earthquake Early
Warning System (IEEWS)

[7] The seismic risk in Istanbul is considerable [Hubert‐
Ferrari et al., 2000] caused by its proximity to the North
Anatolian fault below the Sea of Marmara [Armijo et al.,
2002; Le Pichon et al., 2002] and its dense population.
The probability for an earthquake of magnitude 7 or larger
beneath the Sea of Marmara in the time span 2004–2034 has
been calculated to be 35%–70% [Parsons, 2004]. In
response to this threat, the Istanbul EEW system (IEEWS)
was installed in 2002 [Erdik et al., 2003]. The IEEWS
comprises ten real‐time 3‐component accelerometric sen-
sors distributed along the shoreline of the Sea of Marmara
(Figure 1). The current system is based on three trigger

thresholds that need to be exceeded at three or more sensors
within 5 seconds before a warning is declared. The current
thresholds are 0.02, 0.05, and 0.1 g, corresponding to
warning classes I, II, and III, respectively [Erdik et al.,
2003]. The trigger thresholds need to be large enough to
avoid false alarms caused by small earthquakes and small
enough to provide reliable warnings for moderate to large
events with strong shaking, without missing important
alarms. The current values have been chosen based on
expert judgment, without a clear quantitative relationship to
the expected ground motions in Istanbul.

3. Finite Fault Stochastic Seismogram Simulation

[8] Our optimization approach requires recordings of
earthquakes that are representative for the seismic activity in
the given region, including both small and large magnitude
earthquakes on all potentially active faults. Alike in most
regions in the world, respective data in the Marmara region is
very sparse, and therefore the simulation of synthetic seis-
mograms from sets of scenario earthquakes is unavoidable.
[9] In order to assess the performance of the IEEWS, we

therefore constructed a massive database of 36,000 synthetic
seismograms from 150 scenario earthquakes (Figures 1
and 2) along five fault segments beneath the Sea of

Figure 1. Epicenters of the 180 simulated scenario earthquakes in the Marmara region around Istanbul.
150 events are simulated along five fault segments in the Sea of Marmara (see Figure 3a) and 30 are
randomly distributed around the city. This set of scenario earthquakes covers a wide range of potential
seismic events in the Sea of Marmara region and is used to evaluate the performance of different EEW
systems. The ten stations of the current Istanbul EEW system (IEEWS) are shown as yellow triangles
(three of them located on the Prince’s Islands southeast of Istanbul), and the user site for warnings,
downtown Istanbul, is marked with a red square.
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Marmara (Figure 3a) [Böse et al., 2008] with moment
magnitudes ranging from 4.5 to 7.5 using the extended
finite‐fault stochastic simulation technique (FFSST) for
seismicP‐ and S‐wavemotion [Beresnev and Atkinson, 1997;
Böse, 2006; Böse et al., 2008]. Additionally, 30 randomly
distributed events with magnitudes between 4.5 and 5.0
were considered. Seismograms were calculated on a grid of
potential station locations with 0.1° grid spacing in latitude
and longitude surrounding Istanbul (128 onshore and
112 offshore sites; Figure 3a), as well as at the selected user
site for warnings, downtown Istanbul. The 112 offshore
locations within the Sea of Marmara were considered as
potential sites of ocean bottom seismometers (OBS).
[10] The FFSST divides the fault plane of an earthquake

into a number of subfaults, each of which is assumed to

Figure 2. Example for a simulated acceleration time his-
tory in Istanbul from a magnitude 6.9 earthquake with an
epicentral distance of 33 km. Shown are the typical features
of interest in EEW, the P‐ and S‐wave onsets, as well as the
peak ground motion.

Figure 3. (a) Comparison of sensor locations of the current Istanbul EEW system (IEEWS) and opti-
mized system with ten sensors. The grey open triangles represent the grid of potential onshore station
locations at which synthetic seismograms are generated from all scenario earthquakes. Three grid points
were included on the Prince’s Islands southeast of Istanbul, exactly co‐located with the current stations.
The five segments on which the set of scenario earthquakes were simulated are shown as black lines.
Segment 4 represents joint ruptures of segment 1, 2, and 3. (b) Classification errors for the current
IEEWS. Each bar shows the percentage of events of the respective class (0‐III) in the simulated set of
earthquakes. The different gray scales indicate how many of the events within a given class have been
correctly classified (darkest), or have been under‐estimated or overestimated by one, two or three levels,
respectively. Note the large amount of misclassified events of class I (especially those misclassified by
two levels) and II. These events are overestimated to be class III, i.e., highly damaging, earthquakes.
(c) Same as (b) for the optimized system of ten stations. Note the strong increase of correctly classified
earthquakes.
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behave as a point source radiating seismic waves. For each
of these subfaults, the ground motion at the observation site
is calculated using appropriate models for the velocity struc-
ture, source spectral shape, and geometrical and anelastic
attenuation [Böse, 2006; Böse et al., 2008]. Site amplifica-
tion effects were estimated from the topographic slope that
can be considered as a rough proxy for the shear wave
velocity of the uppermost 30 m, VS30 [Wald and Allen,
2007]. The corresponding data were downloaded from the
global VS30 map server provided by the United States Geo-
logical Survey at 30 arc‐sec resolution (http://earthquake.
usgs.gov/vs30/). From the VS30 estimates, each potential
station location was assigned to one of the National Earth-
quake Hazard Reduction Program (NEHRP) site classes and
an average site amplification function (considering linear
soil behavior) for the respective class was used [Boore and
Joyner, 1997]. Even though this approach provides first
order estimates of site amplification only and considerable
deviations might exist from this average amplification at a
given site, it is at present the best approach to include a
systematic estimate of site effects in ground motion simu-
lations at a large number of sites. Of course, if empirical site
response studies or borehole data were available, they could
also be used to characterize site response at these locations.
Most grid points were associated with NEHRP C site
response class, only few of them as NEHRP B or D. For the
grid of potential OBS locations beneath the Sea of Marmara,
the topography‐based approach cannot be used and we
considered these grid points as NEHRP C sites.
[11] The final seismogram from a given earthquake at a

given site is obtained by a summation of the contribu-
tions from the different subfaults with appropriate time
lags to account for the rupture propagation and different
lengths of subfault‐receiver paths, and appropriate weights
corresponding to the (variable) radiation strength of each
subfault, accounting for the typically observed slip hetero-
geneity [Somerville et al., 1999]. Amplitude levels as well
as frequency content and duration of ground motion were
calibrated with observations from the Izmit and Dücze
earthquakes and from a small event (M 4.3) which occurred
in the Sea of Marmara, as well as to agree with typical
ground motion attenuation relationships [Böse, 2006]. The
slip distributions on the fault were randomly generated. Both
the random phase of the stochastic procedure and the slip
distribution have significant impact on the generated time
histories. Therefore, we obtain somewhat different warning
times for different realizations. Considering in this study a
large dataset of different scenario events, we assume to give
a reasonable reflection of the aleatory variability of any
(large) set of recorded ground motions.
[12] The synthetic seismograms were not perturbed

through adding noise to the traces. Visual inspection of
accelerometric data recorded by the surface sensor of the
Ataköy vertical array located in the western part of Istanbul
[Parolai et al., 2009] not very far away from one of the
current IEEWS stations show for instance a time domain
noise level of the order of 0.1 mg, which is two orders of
magnitude lower than the lowest trigger threshold we are
considering (0.01 g). Therefore, seismic noise should not
have a serious impact on the discrimination between small
and large events based on time domain trigger threshold
exceedance.

[13] As a representation of the current IEEWS, the grid
nodes closest to the current sensor locations were picked.
Since in the current IEEWS methodology, time domain
amplitude information of the entire seismograms, rather
than phase information of the early P‐wave signals is being
used, stochastically simulated ground motions calibrated to
realistic amplitude levels are suitable synthetic data in this
case.

4. Optimization Approach

[14] With the database described above, we have now at
hand a set of scenario earthquakes for which an EEW sys-
tem for Istanbul should show the best possible performance.
As mentioned at the beginning of the previous section, it is
of highest relevance that these scenario earthquakes cover
all faults around Istanbul that might be capable of generating
earthquakes posing a hazard to the city. If this were not the
case, the optimally designed EEW system would not be able
to appropriately deal with events occurring in these uncon-
sidered source regions, which in turn could lead to missing
important alarms. In the case of Istanbul, the seismic hazard
is practically entirely determined by the branches of the
North Anatolian fault beneath the Sea of Marmara, which
are, according to current knowledge, the only structures in
the immediate vicinity of Istanbul that can support such
large earthquakes. Therefore, by defining a set of scenario
events providing a detailed coverage of these potential source
regions throughout the entirety of the Sea of Marmara, we
are confident not to have forgotten any relevant source zone
for the Istanbul EEW system. The 30 randomly distributed
smaller scenario events account for the possibility that a
smaller earthquake might also occur off the North Anatolian
fault as well.
[15] The optimization results presented in this article

depend of course on the dataset of simulated seismograms
used for this purpose. Due to the large number of parameters
involved in the calculation of the latter and limited com-
putational resources, it is impossible to provide a detailed
analysis of the impact of each of these parameters on the
final optimization results. However, tests using subsets
of the database led to stable results very similar to those
obtained using the full dataset, which are described below.
[16] Once this set of representative scenario earthquakes is

defined, there are three cases that should be considered.

4.1. Performance Evaluation of An Existing
EEW System

[17] If sensors are in place and the algorithm and its
parameters specified, then the system performance of an
EEW system can be evaluated for a set of scenario events.
First attempts of such a performance evaluation have
recently been made in southern Italy [Zollo et al., 2009],
with a particular interest in finite‐fault effects.
[18] For a proper evaluation of the IEEWS, it is necessary

to provide a quantitative relationship between ground
motion in Istanbul (user site for warnings) and each warning
class. Therefore, we considered earthquakes causing peak
ground acceleration (PGA) in Istanbul of 0.02 g ≤ PGA <
0.07 g as class I events (i.e., for these events, a class I
warning should be declared), with 0.07 g ≤ PGA < 0.12 g as
class II, and with PGA ≥ 0.12 g as class III events. For this
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classification, we followed the rule of thumb that ground
motions with PGA > ∼0.1 g are considered as potentially
seriously damaging [Anderson, 2003], and with our choice,
class I and II each cover a range of 0.05 g. Earthquakes with
PGA < 0.02 g are considered as class 0 events, i.e., no
warning should be declared. Note that these class definition
thresholds simply determine what warning class should be
declared by the EEW system for a given event in the optimal
case, and they are different from the trigger thresholds of the
EEW system (which determine what warning class is really
declared by the considered system). The choice of these
class definition thresholds is to some degree arbitrary and
should be adapted to the desired system sensitivity or users’
needs if known. Note that for an event of warning class III,
class I and II alarms will be declared first.
[19] For each simulated scenario earthquake, the available

warning time for a given class is calculated as the difference
between the time when the class definition threshold in
Istanbul is first exceeded (e.g., for class II when the ground
motion in Istanbul first exceeds 0.07 g) and the time when
the trigger threshold of that class has been exceeded at three
sensors within 5 seconds (e.g., for the current IEEWS,
0.05 g for class II).
[20] The evaluation of the performance of the current

system can then be done by considering the available
warning times for all scenario earthquakes as well as the
number of correctly and incorrectly classified events.
Whether or not the performance of the system is considered
acceptable depends on the criteria set by the user of the
system. Concerning the current IEEWS, as mentioned ear-
lier, the current trigger thresholds are set to 0.02, 0.05, and
0.1 g, corresponding to warning classes I, II, and III,
respectively [Erdik et al., 2003], and these are smaller than
the chosen class definition thresholds in Istanbul in our case.
Hence, as the sensors of the current system are of course
closer to the fault segments beneath the Sea of Marmara
than downtown Istanbul and since obviously ground motion
amplitudes decrease with increasing distance, it can be
expected that with these class definition thresholds in
Istanbul, the current system might provide a relatively large
number of false alarms, as we show later. Therefore, we
expect that the trigger thresholds would need to be increased
for the current system in order to increase its performance
with the used definition of warning classes.

4.2. Evaluation and Optimization of EEW Algorithm
Parameters (Here: Trigger Thresholds)

[21] The parameters of an EEW algorithm can be evalu-
ated and optimized by applying the algorithm to the set of
scenario events under the variation of the parameters. What
makes this step nontrivial is the fact that, as soon as different
variants of the EEW system are compared with each other,
it is necessary to define an appropriate cost function (or
objective function), whose value for a given EEW system
variant depends both on the available warning times and
classification performance (taking into account also the
effects of false and missed alarms) for all scenario events.
[22] Using the cost function described in the following

section, we performed a systematic search over different
trigger threshold combinations while keeping the sensor
locations of the current IEEWS fixed in order to find the
lowest cost combination of the trigger thresholds.

4.3. Evaluation and Optimization of a Seismic Network

[23] The evaluation and optimization of a new seismic
network is the most challenging task and involves either
supplementing an existing network with additional sensors
or designing a completely new network. It requires the
determination of both optimal locations for the (additional)
sensors and the best system parameters at the same time.
Depending on their number, the parameters may be opti-
mized by simple search over different combinations of
them; however, this becomes difficult (if not impossible) if
sensor locations have to be also optimized at the same time,
because for the latter usually a large number of possible
solutions exist. For this reason and because this problem
cannot be formulated as a simple linear inverse problem,
nonlinear optimization techniques such as simulated anneal-
ing or genetic algorithms come into play.

5. Cost Function and Microgenetic Algorithm

5.1. The Cost Function

[24] In every optimization problem, the choice of the cost
function is most essential for evaluating the quality of a
given set of model parameters. A model performing best
considering one cost function may not remain to be the best
when considering another one. The definition of an appro-
priate cost function is not straightforward in this case
because we are not fitting synthetic data calculated with a
set of model parameters to observations in the classical
sense [Tarantola, 2005]. Instead, we need a cost function
that is able to find the EEW system configuration with
largest warning times at the highest level of reliability (i.e.,
best classification performance). Since there is usually a
trade‐off between these two requirements [Böse et al.,
2008], the cost function has to find the best compromise
between them.
[25] Furthermore, a class II event, e.g., should be char-

acterized by two warning times, one for class I and one for
class II, because the exceedance of the higher trigger
threshold requires also the exceedance of the threshold of
the lower class. In the case of erroneous classification as
class I event, no warning time of class II is available that
could be evaluated. Instead, the effect of the missed alarm of
class II has to be accounted for in the cost function. A
similar problem arises in the case of false alarms, i.e., if the
warning class declared is too high.
[26] We have developed a cost function to cope with these

problems:

cost ¼
XNevt

i¼1

Wi L � ð1� KÞ � sigmoidðtwarn;i; tcenter; SÞ þ K
� � ð1Þ

with

sigmoidðtwarn;i; tcenter; SÞ ¼ 1� 1

1þ exp �Sðtwarn;i � tcenterÞ
� � :

ð2Þ

twarn,i represents the available warning time for the ith event,
and tcenter is a fixed center time of the sigmoid function, i.e.,
the time where the sigmoid function takes the value 1/2.
The sigmoid in (2) equals one for twarn � tcenter (small,
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respectively, insufficient warning time), 1/2 for twarn =
tcenter, and zero for twarn � tcenter (large warning time)
(Figure 4). K is either zero if the estimated class is equal to
the expected class (i.e., correct classification) or one other-
wise; L is a constant of value one for expected class I, II, or
III events and zero for expected class 0 events. Finally, S is
the spread parameter of the sigmoid function that governs
how strongly it spreads over time and Wi is the weight
associated with event i. By minimizing the cost function in
equation (1), we maximize at the same time both the number
of correct classifications and the available warning times.
The final cost for the EEW system is thus given by the
weighted sum (normalized to unity) of these individual
earthquake costs, with weights chosen such that the
expected warning classes are equally weighted rather than
the individual events.
[27] The cost of each earthquake in the dataset is set to

the maximum value of one if it is not correctly classified
(K = 1). Warning times are evaluated only for correctly
classified events (K = 0). Correct classification is considered
as a fundamental precondition before warning times are
evaluated because large numbers of false and missed alarms
are socioeconomically unacceptable even if the warning
times for the remaining correctly classified events are
excellent.
[28] For class II and class III events, only the warning

times of class II, respectively, class III are considered (and
not the warning times of the lower classes that are auto-
matically declared as well) since the warning time that really
matters is the one for the final class. The parameter L (L = 0
for class 0 events, L = 1 otherwise) is needed to deal with
the events of class 0, where no warning by the system
should be declared. If such an event is correctly classified,
there is no warning time to be evaluated, and the individual
cost for this specific event will be zero because K = 0. If a
class 0 event is overestimated and leads to a false alarm, the
(nonweighted) individual cost for that event will be one,
since K = 1 and L = 0 and the available warning time will

not be evaluated since no warning is desired for such an
event.
[29] The weighting of events in equation (1) is necessary

because the number of class 0 events is much larger than the
number of class I, II, or III events. This is also to be
expected in reality since small events that should not trigger
the system are more abundant than large ones that should do
so. If all earthquakes would be equally weighted, the class
0 events would clearly dominate the evaluation scheme.
Therefore, we chose to assign equal weights to the four
classes of expected ground motion in Istanbul rather than to
all events:

Wi ¼ 1

4
� 1

NclassðiÞ
; ð3Þ

where Nclass(i) is the total number of earthquakes falling into
the warning class of event i (N0 = 79, NI = 46, NII = 28 and
NIII = 27 for classes 0, I, II, and III, respectively). The sum
of the weights for all events equals one.
[30] Instead of using a sigmoid function in equation (1),

the warning times could also be evaluated with a linear
function, which might appear more logical at first glance.
However, for a given EEW application, the usefulness of the
warning time is not necessarily steadily increasing with
increasing warning time. For instance, if a warning time of
5 seconds is enough to cut the flow of a gas pipeline, the
availability of 15 seconds does not provide an enormous
additional gain for this specific application. In such a case, it
is preferable to design an EEW system that provides overall
somewhat shorter warning times (as long as they are larger
than 5 seconds in that case), but is highly robust, rather than
a system providing very large warning times for a subset of
events, but with lower overall reliability. For this reason, we
decided to use a sigmoid function in order to evaluate the
warning times. The center time tcenter of the sigmoid in
equation (1) can be chosen based on the application in mind
and the spread of the function based on the tolerance of
warning times lower than tcenter.
[31] For the demonstration of our approach on the

example of Istanbul, we chose tcenter based on consideration
of the local seismotectonic setting. For each event, we
assumed that at every onshore grid point a hypothetical
seismic station were available. For a given trigger threshold,
we determined the time when this trigger threshold was first
exceeded at three hypothetical stations and considered this
time as the earliest theoretically possible time when a
warning can be declared. This gave us the largest theoreti-
cally possible warning times for all events and warning
classes in the database.
[32] For trigger thresholds in the range of 0.01–0.15 g, the

largest theoretically possible warning times range between 0
and 20 seconds with a median of about 7–8 seconds for all
classes (Figures 5a–5c). A further increase of the trigger
threshold to, for instance, 0.2 g leads to a decrease of the
median to about 5 seconds for class III events (Figure 5d).
Since we cannot exclude that the optimal trigger threshold
for class III might be located in the upper part of the con-
sidered range (0.01–0.32 g) and these largest theoretically
possible warning times cannot be reached with a realistic
network of a much smaller number of sensors, we decided to
use tcenter = 6 seconds for class I and II warning times and

Figure 4. Sigmoid function as defined in equation (2)
for the evaluation of class I and II events (black line, with
tcenter = 6 seconds) and class III (gray line with tcenter =
4 seconds).
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tcenter = 4 seconds for the evaluation of class III warning
times. The spread parameters S of the sigmoid function was
set such that the function in equation (2) reached the plateau
value of one (maximum nonweighted individual cost) for
any warning time lower than 0 seconds. With these defini-
tions, a warning time of class I and II is assigned zero cost if
it is larger than about 12 sec (since then there is no cost
reduction anymore), and one of class III is regarded as
optimal if it is larger than 8 sec. We also investigated the
influence of choosing larger tcenter values (for instance
tcenter = 8 seconds for class I and II and tcenter = 6 seconds
for class III).

5.2. The Microgenetic Algorithm (MGA) Optimization
Procedure

[33] For the optimization of sensor locations and trigger
thresholds (i.e., finding sensor locations and trigger thresh-
olds providing minimum cost as defined above), we used a

microgenetic algorithm (MGA) [Krishnakumar, 1989].
MGAs belong to the general class of genetic algorithms
(GAs) [Goldberg, 1989], which are guided search techniques
based on evolutionary principles (survival of the fittest
individuals, genetic recombination of these, and mutation) to
find models that minimize a given cost function.
[34] Typically, a GA starts with a random population of

test models, called chromosomes, which can for instance
consist of binary representations of the different model
parameters (in that case, each bit is usually termed as a
gene). Each chromosome is evaluated and associated with a
cost. The fittest chromosomes (i.e., those with lowest cost)
are allowed to mate and exchange genetic information via a
crossover operator, which leads to a given number of off-
spring. These offspring are then subjected to a mutation
operator and finally form the new generation, and the pro-
cess restarts (for further details on genetic operators, see,
e.g., Haupt and Haupt [1998]). Over many generations, the

Figure 5. Distribution of the largest theoretically possible warning times considering a hypothetical net-
work with stations at all onshore grid points, thus covering the entire region of interest, for four different
trigger thresholds ((a) 0.05 g, (b) 0.10 g, (c) 0.15 g, (d) 0.20 g). For each of these trigger thresholds, these
largest theoretically possible warning times have been computed for all three warning classes and the
median of each distribution is indicated with a dashed line.
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population will lose diversity and converge to a state of
minimum cost, in our case corresponding to optimum sensor
locations and trigger thresholds. However, no guarantee can
be given that the global minimum will be found, so that a
careful analysis of the variability of solutions obtained from
several independent runs of the code is indispensable.
[35] As a general rule, the population size of a genetic

algorithm should scale exponentially with the number of
genes within each chromosome in order to maintain a rea-
sonable degree of genetic diversity over many generations,
so that the algorithm does not prematurely converge into a
local minimum [Goldberg, 1989]. If the number of model
parameters and hence the length of the chromosomes
increases above a certain level, this may lead to population
sizes which are computationally unacceptable since the
convergence of very large populations may need a very
large number of cost function evaluations and a lot of
memory.
[36] A MGA is a variant of a GA which avoids these

problems and has been proven to perform equally well or
even better than classic GAs for a range of optimization
problems [e.g., Krishnakumar, 1989; Carroll, 1996; Abu‐
Lebdeh and Benekohal, 1999; Alvarez, 2002]. An MGA
works very similarly to a classic GA, except for the fact that
it uses very small population sizes. Such small populations
are not able to maintain genetic diversity for very long and
generally converge within few generations. When the
algorithm has converged, the population is reinitialized to a
random state except for the fittest chromosome, which
passes unchanged. Hence, the missing genetic diversity is
compensated by many restarts of the algorithm. A MGA
usually converges with fewer cost function evaluations than
a classic GA does.
[37] In our case, the chromosomes consist of the sensor

locations for an EEW system with a given number of stations
and the set of three trigger thresholds. For the sensor loca-
tions, we searched the 128 grid points for potential onshore
stations and, if OBS were considered, the 112 offshore grid
points within the Sea of Marmara for the location of these
sensors. The search range for the three trigger thresholds
was 0.01–0.32 g, with intervals of 0.01 g.
[38] We used a MGA with binary encoding, a population

size of fifteen chromosomes, uniform crossover with a
probability Pcross = 0.95 and no mutation. The algorithm
was defined to have converged when less than 5% of the
genes differed from one chromosome to another within one
generation and in that case, the population was reinitialized.
[39] The algorithm was run ten times for each investigated

case with different random seed for 5,000 generations. For
the first time after 1,000 generations and then every 500, we
checked whether the fittest chromosome had improved by
more than 1%. If this was not the case, the algorithm was
completely reinitialized, including the fittest chromosome.
With this procedure, we assess in each case a total of more
than 700,000 EEW system configurations and put a strong
emphasis in sampling the search space in order to obtain a
set of best solutions rather than one single optimum one
only. In each case, the 1,000 best solutions were analyzed to
assess the stability of the minimum cost EEW system con-
figuration, both in terms of station distribution and trigger
thresholds.

[40] We finally note that our current scheme for evalua-
tion and optimization assumes a fully functional EEW
system. Failures of individual stations are significantly
complicating the situation and a full treatment of this prob-
lem would need to take into account random station failures
during the simulated scenario earthquakes. One solution to
deal with this problem would be calculating, for each station
configuration, the cost for the system when a given number
of stations (e.g., two) fail, repeat this calculation for the
failure of all possible subsets of that number of the network,
and use, for instance, the cost of the worst case or the
median value as final estimate for the cost of this particular
system configuration. However, this procedure would involve
a strong increase in computation time, since the evaluation
of one EEW system configuration would need several or
even many cost function evaluations, increasing severely
with increasing number of stations and potential station
failures.

6. Results and Discussion

6.1. Performance Evaluation of the Current IEEWS

[41] Using the simulated ground motion time series, we
find that the available warning times for the current IEEWS
range from 0 to 17 seconds (Figure 6a). On average,
∼7.5 seconds warning time are available of events in class III
(i.e., most severe ground shaking in Istanbul). However, a
serious drawback of the current IEEWS is that it tends to
produce a large number of false class III alarms (∼2.5 times
more class III warnings than expected), and thus strongly
overpredicts the ground motion level in Istanbul (Figure 6).
In terms of the previously defined classification of severity
of shaking in Istanbul, only ∼54% of all events are correctly
classified by the IEEWS (Figure 7, Table 1). Note that this
result depends on the previously discussed choice of class
definition thresholds for the ground motions in Istanbul
assigning each event to class 0, I, II, or III (i.e., on the
choice of what level of ground motion is considered as
severe). Thus the current IEEWS is highly sensitive to small
and moderate ground shaking, declaring alarms of the
highest category also for many events with PGA in Istanbul
well below 0.1g.

6.2. Evaluation and Optimization of Trigger
Thresholds

[42] From a systematic search over different trigger
threshold combinations while keeping the sensor locations
of the current IEEWS fixed, we find that the performance is
best if the trigger thresholds are set to 0.03, 0.12, and 0.16 g
(compared with 0.02, 0.05, and 0.1 g of the current IEEWS).
We searched the trigger threshold range 0.01–0.32 g with
increments of 0.01 g and under the constraint that the class
II and III thresholds are larger than the class I and II ones,
respectively. These new thresholds lead to an overall cost
reduction of ∼23% as compared with the current IEEWS
(Figure 7, Table 1). Though the warning times are somewhat
decreased due to the higher trigger thresholds for classes II
and III (Figure 8), more than 80% of all events are now
correctly classified (Figure 7). This outcome clearly shows
that, for a given EEW system with given seismic network
layout, the appropriate choice of the system parameters
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governing the warning declarations plays a crucial role in
the performance of the system.

6.3. Evaluation and Optimization of the Seismic
Network

[43] We use the MGA to study several scenarios,
including the supplementation of the current IEEWS with
six onshore or three ocean bottom seismometers (OBS) in
the Sea of Marmara (Figure 7, red), or designing completely
new EEW systems with five to fifteen sensors, respectively
(Figure 7, blue). We also investigate a network with seven
onshore and three OBS stations (Figure 7, magenta).
6.3.1. Different Numbers of Onshore Sensors
[44] We find that at least six onshore sensors are required

for obtaining a performance level approaching the one of the
current IEEWS with optimally chosen trigger thresholds
(Figure 7, Table 1). For eight or more stations, the same
group of seven to eight sites always dominates in the 1,000
best EEW system configurations, and this group does not
significantly change when further increasing the number of

sensors. In particular, the optimum network configuration
found for a system with ten stations shows striking simi-
larities with the current IEEWS (Figure 3a), but its classi-
fication performance is strongly improved: while the current
IEEWS overestimates most class I and II events to be class III
(Figure 3b), this effect disappears in the optimized system,
mainly because of higher trigger thresholds (0.03, 0.12, and
0.2 g compared to the current thresholds of 0.02, 0.05, and
0.1 g) (Figure 3c). However, as a consequence of higher
trigger thresholds the warning times for the class III events
are reduced by ∼2.0–2.5 seconds on average (Figure 9).
[45] The performance of the considered EEW systems

with eight or more sensors does not significantly increase
with increasing number of sensors (Figure 7). Indeed, a
comparison of the available warning times for the optimal
sensor configuration found for fifteen stations with the one
for ten stations (Figure 10) indicates that, while on average
the warning times of class I and II show a slight improve-
ment when increasing the number of sensors, the opposite is
true for class III events.

Figure 6. Performance of the current IEEWS on the simulated dataset. (a) Warning times for the
150 earthquakes bound to the five segments of the North Anatolian fault beneath the Sea of Marmara.
(b) Comparison of the percentage of expected events in each warning class (top) and the estimated per-
centage by the EEW system (bottom). (c) Distribution of the warning times for class I warnings; the
median is indicated with a dashed line. (d) Same as (c) for class III warnings.
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[46] When more sensors are available, each fault segment
can be more densely instrumented, whereby moderate
events further away from Istanbul, causing only moderate
ground motions in the city for which class I or II warnings

are expected, can be detected more timely. However, such
events can cause large ground motions close to the source,
and setting up a denser network therefore leads to the
necessity of increasing the class III trigger threshold (as

Figure 7. Costs (i.e., quantitative measure of performance) of the best EEW system configurations
found by the optimization approach. Black square: cost of the current IEEWS. Blue squares: costs of
the best EEW system configuration for fully optimized systems with different numbers of stations (best
solution found in ten MGA runs, trigger thresholds are also optimized). Magenta square: cost of best con-
figuration for a system of seven onshore stations and three OBS. Red squares: costs of EEW system con-
figurations including the current ten sensors. For each case, the thin black line indicates the cost range of
the 1,000 best solutions found in the MGA runs (except for the current system with optimized thresholds,
since in that case no MGA optimization, but a systematic search over a fixed number of trigger threshold
combinations, was performed). Inset: Percentage of correctly classified scenario events for the different
lowest cost EEW system configurations.

Table 1. Results from the Evaluation and Optimization of EEW Systems with Different Numbers of Onshore Sensors and Under
Consideration of OBSa

Configuration Costmin

Cost range
1,000 best models
(in % of Costmin) A1 (g) A2 (g) A3 (g) factOBS

% Events
correctly
classified

Current 0.574 / 0.02 0.05 0.10 / 53.9
Current optimal thresholds 0.439 / 0.03 0.12 0.16 / 80.6
5 onshore stations 0.536 5 0.03 0.07 0.19 / 84.4
6 onshore stations 0.472 12 0.02 0.10 0.17 / 85.0
8 onshore stations 0.413 10 0.03 0.10 0.17 / 87.8
10 onshore stations 0.397 9 0.03 0.12 0.20 / 86.7
12 onshore stations 0.379 10 0.04 0.12 0.21 / 87.2
15 onshore stations 0.379 7 0.04 0.13 0.24 / 87.8
10 existing stations + 6 onshore stations 0.420 2 0.04 0.12 0.17 / 81.1
10 existing stations + 3 OBS 0.355 5 0.03 0.12 0.26 1.0 82.2
7 onshore stations + 3 OBS 0.325 11 0.03 0.08 0.20 1.4 86.7
10 onshore stations with tcenter = [8 8 6] s 0.530 5 0.04 0.16 0.31 / 75.0
7 onshore stations + 3 OBS with tcenter = [8 8 6] s 0.458 8 0.03 0.13 0.20 1.3 83.3

aShown is the minimum cost in case of optimization runs the cost range of the 1,000 best solutions and the three trigger thresholds of the optimal system
configuration (A1, A2, A3). When also considering OBS, the scaling factor factOBS between trigger thresholds onshore and for OBS is also shown.
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observed in the optimization runs with increasing number of
stations, Table 1) in order to avoid false alarms for Istanbul,
as there may be three or more sensors located near the
epicenter. In return, an increase of the class III trigger
threshold leads to the observed decrease of the average
available warning time for class III events.
[47] No matter what the tested number of sensors is, the

overall classification performance is always better than 80%
if the trigger thresholds are appropriately chosen, even
though generally slightly more events are correctly classi-
fied when designing a completely new system rather than
involving the sensor locations of the current IEEWS
(Figure 7).
6.3.2. Variability Analysis of the Solutions
[48] For each investigated EEW system variant, we obtain

from the MGA runs an optimal system configuration with
lowest cost. This optimal solution, however, may not be the
only good solution, as it is a common situation that the cost
function shows several distinct (or even numerous) local
minima. For this reason, we performed ten independent runs
of the MGA as described above and investigated the vari-
ability of the 1,000 best solutions.

[49] For this purpose, we determined the relative fre-
quency of each potential station location on the grid in the
1,000 best EEW system configurations. For different
numbers of sensors, we generally found a consistent pattern
in the grid points dominantly contributing to the 1,000 best
solutions (Figure 11), and this pattern also clearly appears in
the corresponding minimum cost solution (Figure 12). For
only five sensors, there is basically no choice where to
deploy them, and the variability in the 1,000 best solutions
is very small. For six sensors, there is considerably more
variability, which, however, decreases again when moving
on to a system of eight sensors. From eight to fifteen sen-
sors, there is a consistent pattern of about eight sites that
dominate in the set of 1,000 best solutions: a cluster of three
stations southwest of Istanbul, another cluster on or around
the Prince’s Islands southeast of Istanbul, and one to
two sites on the Yalova peninsula (opposite to Istanbul,
Figure 1) (Figure 11). This clustering into groups of at least
three stations is not very surprising, since our EEW algo-
rithm requires three sensors to exceed the trigger threshold
within 5 seconds before declaring an alarm. Therefore, sets
of three stations have to be close enough to each other to

Figure 8. Same as Figure 6, performance of the IEEWS with optimized thresholds.
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satisfy this condition. This result and the fact that there is no
significant decrease in the cost for a number of sensors
exceeding eight to ten stations (Figure 7, Table 1) suggests
that no significant performance improvement can be expected
using this EEW algorithm with a larger number of sensors.
[50] The stability analysis of the trigger thresholds found

in the 1,000 best solutions (Figure 13) shows strong simi-
larities with the stability analysis of the sensor locations
(Figure 11): the variability increases when increasing the
number of sensors from five to six, but decreases again
when considering eight or ten sensors. In general, the trigger
threshold for class I is the most stable, indicating that the
discrimination between class 0 (no warning) and class I
events works very well.
6.3.3. Supplementing the Current Seismic Network
[51] We find that supplementing the current IEEWS

network for instance with six additional sensors hardly
achieves any enhancements compared to the current system
with optimized trigger thresholds. When considering the
case of supplementing the current IEEWS network with six
sensors, four of these are consistently placed on the Yalova
peninsula (Figure 14a), and the 1,000 best configurations

show very little variability both in station distribution
(Figure 14b) and trigger thresholds (Figure 14c). However,
compared to the current IEEWS with optimized trigger
thresholds, there is only a negligible performance increase
(less than 5% of reduction in cost, Figure 7), and the trigger
thresholds are practically identical (Table 1). This result
clearly suggests that no significant performance increase
can be expected when supplementing the existing network
of ten sensors with additional stations.
6.3.4. The Usage of Three Ocean Bottom Seismometers
[52] We tested two supposed cases: first, we considered

adding three OBS to the current IEEWS network and sear-
ched for their optimal positions within the Sea of Marmara
and the optimal trigger thresholds. Second, we optimized a
completely new system consisting of seven onshore stations
and three OBS.
[53] When considering the usage of OBS, we introduced a

further variable into the optimization, namely a scaling
factor between the trigger thresholds for onshore stations
and the OBS, factOBS, since the OBS will be located much
closer to the fault and therefore, higher trigger thresholds
have to be expected for these stations. We allowed this

Figure 9. Same as Figure 6, performance of the optimized EEW system consisting of ten stations.
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factor to range between one (equal trigger thresholds) and
two (double trigger thresholds for OBS).
[54] Supplementing the current system with three OBS

leads to a considerable decrease in cost of close to 20% as
compared with only optimizing the trigger thresholds of the
system (Table 1). The variability in the locations and trigger
thresholds is again very small (Figures 15b and 15c), and the
scaling factor factOBS ranges between 1 and 1.5 (Figure 15c).
The median of the warning times shows an increase of about
1.3 seconds as compared with the current IEEWS network
configuration and optimal thresholds.
[55] The lowest cost of all considered cases is obtained

when optimizing a system of seven onshore sensors and
three OBS (Figure 16, Table 1). Almost 87% of all events
can be correctly classified with such a system, only some
events of class I have been overestimated to be class II
(Figure 16d). Again, the obtained station distributions and
trigger thresholds for the 1,000 best models are rather stable,
even though there is slightly more variability than for a
system consisting of onshore stations only (Figures 16b
and 16c). The median warning time for class III earthquakes
ranges around 7.3 seconds. Compared with the optimum
ten sensor system with only onshore stations, the warning
time for class III events increases thus by ∼2.4 seconds on
average.

[56] However, the practical problems in using OBS are
considerable (e.g., costs for data transmission or the fact that
steep slopes in the bathymetry in some areas of the Sea of
Marmara may prohibit the successful deployment of an
OBS) which were not considered in our studies. Moreover,
other factors such as the appropriateness of the average site
response function are difficult to assess in the case of OBS
and the ones used for the simulation of the ground motion
time histories beneath the Sea of Marmara (NEHRP C)
might be problematic as well. Nevertheless, while keeping
these drawbacks in mind, our results suggest that the usage
of OBS in the Istanbul case might be promising.
6.3.5. The Effect of Claiming Larger Warning Times
[57] All results discussed so far were obtained using tcenter =

6 seconds for class I and II events and tcenter = 4 seconds for
class III events in the cost function defined in equation (1),
which were chosen based on theoretical considerations for a
hypothetical network having stations at all grid points.
[58] In order to test the effect of claiming larger warning

times, we ran the optimization procedure for an EEW sys-
tem of ten onshore stations as well as for one of seven
onshore and three OBS stations using tcenter = 8 seconds for
class I and II and tcenter = 6 seconds for class III, thus
claiming 2 seconds more of warning time for an event to be
associated with the same cost as before.

Figure 10. Comparison of the performance in terms of warning times between the best system config-
uration found with fifteen sensors and the best with ten sensors. Shown is the difference in warning time,
Dtwarn = twarn,15 − twarn,10, for each correctly classified event (given by the index of the event from 1 to
150, with 30 events on each of the five segments. The three lines (see legend) show the mean Dtwarn for
the three different classes. These indicate that the mean warning times for class I and II are slightly better
for the system of fifteen sensors, while the mean warning times for class III are better for a system of ten
sensors.
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[59] The results reveal a strongly modified sensor con-
figuration in the case of ten onshore stations (Figure 17a),
with the general effect that the sensors move further away
from the user site, downtown Istanbul. Moreover, the
Prince’s Islands southeast of Istanbul do not show any
importance anymore in the results, as can be seen from the
optimum sensor configuration (Figure 17a) and the vari-
ability analysis for the station configuration in the 1,000 best
solutions (Figure 17b). The station distribution as well as the
trigger thresholds show stable characteristics (Figures 17b
and 17c), the latter being larger for class II and III than
previously. However, the most interesting aspect is the fact
that the class III events are almost all incorrectly classified
(Figure 17d), and that the warning times for the few correct
class III events are extraordinarily poor (Figure 17f). This
observation can be explained by the fact that most of the

class III earthquakes originate on segment 2 very close to
Istanbul or on segment 4, which is intended to simulate joint
ruptures of segments 1, 2, and 3. These segments are so
close to Istanbul that it is impossible to fulfill the require-
ment of obtaining these longer warning times while keeping
the class III trigger threshold at a high enough level so that
it does not cause a significant number of class III false
alarms. The cost function in equation (1) associates an insuf-
ficient warning time with the same cost as a missed alarm
(which is effectively the case if the warning comes too late)
and the optimization procedure simply ignores these seg-
ments, as there is no chance to obtain acceptable warning
times following the above definition. Instead, sensors are
moved to areas where there is a chance to fulfill the require-
ments on warning time, which are further away from the city
of Istanbul.

Figure 11. Analysis and comparison of variability in terms of station configuration in the 1,000 best
EEW system configurations found in ten independent runs of the MGA for different numbers of stations.
Each grid point appearing in more than 10% of the 1,000 best configurations is depicted with a colored
triangle, the color and the size of the latter indicating its relevance in the 1,000 best solutions.
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[60] In contrast, the results for the case of seven onshore
and three OBS sensors (Figure 18) look quite similar to
the ones for the same system with smaller tcenter values
(Figure 16), however, with lower influence of the Prince’s
Islands than before, which is again due to the proximity of
these to the city of Istanbul. The trigger thresholds are quite
similar too (Table 1). The main difference is that the warning
times, especially for class II, show a slight improvement
(Figures 18e and 18f), however, at the price of a slight
decrease in the overall classification performance (Table 1,
Figure 18d). In this case, the optimization with the larger
tcenter values still provides reasonable results because, as
discussed earlier, the usage of three OBS has the potential to
increase the warning times on average by 2 seconds as
compared with a system of only onshore stations.
[61] This example shows that there is indeed a trade‐off

between warning time and system robustness: if, for a given
seismotectonic setting, the requested warning times are too

large, then the faults for which this problem applies are
simply ignored.

7. Conclusions

[62] Our results suggest that the current network layout of
the IEEWS is not far from optimal. Furthermore, the current
IEEWS is highly sensitive to rather small ground motion
amplitudes, declaring warnings of the highest category for
events with PGA in Istanbul well below 0.1 g. Therefore, an
appropriate increase of the class II and III trigger thresholds
together with a potential slight rearrangement of the existing
network are likely to have a much stronger impact on
increasing the system performance than adding supple-
mentary sensors. Our results also indicate that the usage of
three OBS in the Sea of Marmara could improve the system
performance (Figure 7) and might increase the available
warning times by 2 to 3 seconds.

Figure 12. Comparison of the station configuration of the best EEW system found in ten independent
runs of the MGA for different numbers of stations.
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Figure 13. Analysis and comparison of variability in terms of trigger thresholds in the 1,000 best EEW
system configurations found in ten independent runs of the MGA for different numbers of stations. Shown
are histograms in percent indicating the relevance of each threshold.

OTH ET AL.: OPTIMIZING SEISMIC NETWORKS FOR EEW B10311B10311

16 of 22



Figure 14. Results of optimization and performance when adding six stations to the current IEEWS
sensor configuration and looking for optimal trigger thresholds. (a) Best station distribution found.
(b) Variability in sensor configuration in 1,000 best configurations. (c) Variability in trigger thresholds
in 1,000 best configurations. (d) Classification errors produced by the best system (see also Figures 3b
and 3c for explanation). (d) Distribution of the warning times for class I warnings; the median is indi-
cated with a dashed line. (f) Same as (e) for class III warnings.
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Figure 15. Same as Figure 14, results of optimization and performance when adding three OBS to the
current IEEWS and looking for optimal trigger thresholds.
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Figure 16. Same as Figure 14, results of optimization and performance of the EEW system when
optimizing a system of seven onshore stations and three OBS.
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Figure 17. Same as Figure 14, results of optimization and performance of the EEW system when
optimizing a system of ten onshore stations with tcenter = 8 seconds for class I and II and tcenter = 6 seconds
for class III in the cost function.
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[63] The proposed methodology enabled us to systemati-
cally look into the performance and optimization potential
of the IEEWS. The technique can also be applied to other
EEW systems by adapting the cost function to the respective
EEW algorithm and the output it provides. The optimization
can also be performed with specific applications in mind.
For instance, if a certain automated application, such as
cutting pipeline flow, needs a minimum time to be executed,
the cost function can be designed to find the optimal system
configuration fulfilling these constraints. Moreover, the

classification scheme for ground shaking severity does not
necessarily have to be based on PGA, as PGA alone is
certainly not the best proxy for expected damage potential.
[64] However, a clear requirement of our approach is that

the database of synthetic seismograms is appropriate for the
corresponding EEW algorithm. For instance, with stochas-
tically simulated time histories as used in this study, a per-
formance evaluation of an EEW system based on magnitude
estimation from the predominant period of the early P‐wave
signals [e.g., Nakamura, 1988; Allen and Kanamori, 2003]

Figure 18. Same as Figure 14, results of optimization and performance of the EEW system when
optimizing a system of seven onshore stations and three OBS with tcenter = 8 seconds for class I and II and
tcenter = 6 seconds for class III in the cost function.
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does not make sense, but would require synthetic wave-
forms with deterministic signals at low frequencies [Olson
and Allen, 2005]. In such a case, more physics‐based
ground motion simulations are required.
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